R постоянная больцмана. Людвиг Больцман: Именные достижения

Родился в 1844 году в Вене. Больцман является первопроходцем и первооткрывателем в науке. Его работы и исследования часто были непонятны и отвергнуты обществом. Однако с дальнейшим развитием физики его труды были признаны и впоследствии опубликованы.

Научные интересы ученого охватывали такие фундаментальные области, как физика и математика. С 1867 года он работал преподавателем в ряде высших учебных заведений. В своих исследованиях он установил, что обусловлено хаотическими ударами молекул о стенки сосуда, в котором они находятся, в то время как температура напрямую зависит от скорости движения частиц (молекул), иными словами, от их Следовательно, чем с большей скоростью движутся эти частицы, тем выше и температура. Постоянная Больцмана названа в честь знаменитого австрийского ученого. Именно он внес неоценимый вклад в развитие статической физики.

Физический смысл данной постоянной величины

Постоянная Больцмана определяет связь между такими как температура и энергия. В статической механике она играет главную ключевую роль. Постоянная Больцмана равна k=1,3806505(24)*10 -23 Дж/К. Числа, находящиеся в круглых скобках, указывают на допустимую погрешность значения величины относительно последних цифр. Стоит отметить, что постоянная Больцмана также может быть получена из других физических постоянных. Однако эти вычисления достаточно сложны и трудновыполнимы. Они требуют глубоких познаний не только в области физики, но и

Постоя́нная Бо́льцмана ( k {\displaystyle k} или k B {\displaystyle k_{\rm {B}}} ) - физическая постоянная , определяющая связь между температурой и энергией . Названа в честь австрийского физика Людвига Больцмана , сделавшего большой вклад в статистическую физику , в которой эта постоянная играет ключевую роль. Её экспериментальное значение в Международной системе единиц (СИ) равно :

k = 1,380 648 52 (79) × 10 − 23 {\displaystyle k=1{,}380\,648\,52(79)\times 10^{-23}} Дж / .

Числа в круглых скобках указывают стандартную погрешность в последних цифрах значения величины.

Энциклопедичный YouTube

    1 / 3

    ✪ Распределение Максвелла - Больцмана (часть 6) | Термодинамика | Физика

    ✪ Урок 433. Фотоэффект. Законы фотоэффекта

    ✪ Как белое сделать черным. Natürlich!

    Субтитры

Связь между температурой и энергией

В однородном идеальном газе , находящемся при абсолютной температуре T {\displaystyle T} , энергия, приходящаяся на каждую поступательную степень свободы , равна, как следует из распределения Максвелла , k T / 2 {\displaystyle kT/2} . При комнатной температуре (300 ) эта энергия составляет 2 , 07 × 10 − 21 {\displaystyle 2{,}07\times 10^{-21}} Дж , или 0,013 эВ . В одноатомном идеальном газе каждый атом обладает тремя степенями свободы, соответствующими трём пространственным осям, что означает, что на каждый атом приходится энергия в 3 2 k T {\displaystyle {\frac {3}{2}}kT} .

Зная тепловую энергию, можно вычислить среднеквадратичную скорость атомов, которая обратно пропорциональна квадратному корню атомной массы. Среднеквадратичная скорость при комнатной температуре изменяется от 1370 м/с для гелия до 240 м/с для ксенона . В случае молекулярного газа ситуация усложняется, например, двухатомный газ имеет пять степеней свободы (при низких температурах, когда не возбуждены колебания атомов в молекуле).

Определение энтропии

Энтропия термодинамической системы определяется как натуральный логарифм от числа различных микросостояний Z {\displaystyle Z} , соответствующих данному макроскопическому состоянию (например, состоянию с заданной полной энергией).

S = k ln ⁡ Z . {\displaystyle S=k\ln Z.}

Коэффициент пропорциональности k {\displaystyle k} и есть постоянная Больцмана. Это выражение, определяющее связь между микроскопическими ( Z {\displaystyle Z} ) и макроскопическими состояниями ( S {\displaystyle S} ), выражает центральную идею статистической механики.

Предполагаемая фиксация значения

XXIV Генеральная конференция по мерам и весам , состоявшаяся 17-21 октября 2011 года, приняла резолюцию , в которой, в частности, предложено будущую ревизию Международной системы единиц произвести так, чтобы зафиксировать значение постоянной Больцмана, после чего она будет считаться определённой точно . В результате будет выполняться точное равенство k =1,380 6X⋅10 −23 Дж/К, где Х заменяет одну или более значащих цифр, которые будут определены в дальнейшем на основании наиболее точных рекомендаций CODATA . Такая предполагаемая фиксация связана со стремлением переопределить единицу термодинамической температуры кельвин , связав его величину со значением постоянной Больцмана.

Постоянная Больцмана, представляющая собой коэффициент, равный k = 1 , 38 · 10 - 23 Д ж К, является частью значительного числа формул в физике. Она получила свое название по имени австрийского физика – одного из основоположников молекулярно-кинетической теории. Сформулируем определение постоянной Больцмана:

Определение 1

Постоянной Больцмана называется физическая постоянная, с помощью которой определяется связь между энергией и температурой.

Не следует путать ее с постоянной Стефана-Больцмана, связанной с излучением энергии абсолютно твердого тела.

Существуют различные методы вычисления данного коэффициента. В рамках этой статьи мы рассмотрим два их них.

Нахождение постоянной Больцмана через уравнение идеального газа

Данная постоянная может быть найдена с помощью уравнения, описывающего состояние идеального газа. Опытным путем можно определить, что нагревание любого газа от T 0 = 273 К до T 1 = 373 К приводит к изменению его давления от p 0 = 1 , 013 · 10 5 П а до p 0 = 1 , 38 · 10 5 П а. Это достаточно простой эксперимент, который может быть проведен даже просто с воздухом. Для измерения температуры при этом нужно использовать термометр, а давления – манометр. При этом важно помнить, что количество молекул в моле любого газа примерно равно 6 · 10 23 , а объем при давлении в 1 а т м равен V = 22 , 4 л. С учетом всех названных параметров можно перейти к вычислению постоянной Больцмана k:

Для этого запишем уравнение дважды, подставив в него параметры состояний.

Зная результат, можем найти значение параметра k:

Нахождение постоянной Больцмана через формулу броуновского движения

Для второго способа вычисления нам также потребуется провести эксперимент. Для него нужно взять небольшое зеркало и подвесить в воздухе с помощью упругой нитки. Допустим, что система зеркало-воздух находится в стабильном состоянии (статическом равновесии). Молекулы воздуха ударяют в зеркало, которое, по сути, ведет себя как броуновская частица. Однако с учетом его подвешенного состояния мы можем наблюдать вращательные колебания вокруг определенной оси, совпадающей с подвесом (вертикально направленной нитью). Теперь направим на поверхность зеркала луч света. Даже при незначительных движениях и поворотах зеркала отражающийся в нем луч будет заметно смещаться. Это дает нам возможность измерить вращательные колебания объекта.

Обозначив модуль кручения как L , момент инерции зеркала по отношению к оси вращения как J , а угол поворота зеркала как φ , можем записать уравнение колебаний следующего вида:

Минус в уравнении связан с направлением момента сил упругости, который стремится вернуть зеркало в равновесное положение. Теперь произведем умножение обеих частей на φ , проинтегрируем результат и получим:

Следующее уравнение является законом сохранения энергии, который будет выполняться для данных колебаний (то есть потенциальная энергия будет переходить в кинетическую и обратно). Мы можем считать эти колебания гармоническими, следовательно:

При выведении одной из формул ранее мы использовали закон равномерного распределения энергии по степеням свободы. Значит, можем записать так:

Как мы уже говорили, угол поворота можно измерить. Так, если температура будет равна приблизительно 290 К, а модуль кручения L ≈ 10 - 15 Н · м; φ ≈ 4 · 10 - 6 , то рассчитать значение нужного нам коэффициента можно так:

Следовательно, зная основы броуновского движения, мы можем найти постоянную Больцмана с помощью измерения макропараметров.

Значение постоянной Больцмана

Значение изучаемого коэффициента состоит в том, что с его помощью можно связать параметры микромира с теми параметрами, что описывают макромир, например, термодинамическую температуру с энергией поступательного движения молекул:

Этот коэффициент входит в уравнения средней энергии молекулы, состояния идеального газа, кинетической теории газа, распределение Больцмана-Максвелла и многие другие. Также постоянная Больцмана необходима для того, чтобы определить энтропию. Она играет важную роль при изучении полупроводников, например, в уравнении, описывающем зависимость электропроводности от температуры.

Пример 1

Условие: вычислите среднюю энергию молекулы газа, состоящего из N -атомных молекул при температуре T , зная, что у молекул возбуждены все степени свободы – вращательные, поступательные, колебательные. Все молекулы считать объемными.

Решение

Энергия равномерно распределяется по степеням свободы на каждую ее степень, значит, на эти степени будет приходиться одинаковая кинетическая энергия. Она будет равна ε i = 1 2 k T . Тогда для вычисления средней энергии мы можем использовать формулу:

ε = i 2 k T , где i = m p o s t + m υ r + 2 m k o l представляет собой сумму поступательных вращательных степеней свободы. Буквой k обозначена постоянная Больцмана.

Переходим к определению количества степеней свободы молекулы:

m p o s t = 3 , m υ r = 3 , значит, m k o l = 3 N - 6 .

i = 6 + 6 N - 12 = 6 N - 6 ; ε = 6 N - 6 2 k T = 3 N - 3 k T .

Ответ: при данных условиях средняя энергия молекулы будет равна ε = 3 N - 3 k T .

Пример 2

Условие: есть смесь двух идеальных газов, плотность которых в нормальных условиях равна p. Определите, какова будет концентрация одного газа в смеси при условии, что мы знаем молярные массы обоих газов μ 1 , μ 2 .

Решение

Сначала вычислим общую массу смеси.

m = ρ V = N 1 m 01 + N 2 m 02 = n 1 V m 01 + n 2 V m 02 → ρ = n 1 m 01 + n 2 m 02 .

Параметр m 01 обозначает массу молекулы одного газа, m 02 – массу молекулы другого, n 2 – концентрацию молекул одного газа, n 2 – концентрацию второго. Плотность смеси равна ρ .

Теперь из данного уравнения выразим концентрацию первого газа:

n 1 = ρ - n 2 m 02 m 01 ; n 2 = n - n 1 → n 1 = ρ - (n - n 1) m 02 m 01 → n 1 = ρ - n m 02 + n 1 m 02 m 01 → n 1 m 01 - n 1 m 02 = ρ - n m 02 → n 1 (m 01 - m 02) = ρ - n m 02 .

p = n k T → n = p k T .

Подставим полученное равнее значение:

n 1 (m 01 - m 02) = ρ - p k T m 02 → n 1 = ρ - p k T m 02 (m 01 - m 02) .

Поскольку молярные массы газов нам известны, мы можем найти массы молекул первого и второго газа:

m 01 = μ 1 N A , m 02 = μ 2 N A .

Также мы знаем, что смесь газов находится в нормальных условиях, т.е. давление равно 1 а т м, а температура 290 К. Значит, мы можем считать задачу решенной.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Физический смысл: Газовая постоянна я численно равна работе расширения одного моля идеального газа в изобарном процессе при увеличении температуры на 1 К

В системе СГС Газовая постоянная равна:

Удельная Газовая постоянная равна:

В формуле мы использовали:

Универсальная газовая постоянная (постоянная Менделеева)

Постоянная Больцмана

Число Авогадро

Закон Авогадро - В равных объемах различных газов при постоянных температуре и давлении содержится одинаковое число молекул.

Из Закона Авогадро выводится 2 следствия:

Следствие 1 : Один моль любого газа при одинаковых условиях занимает одинаковый объем

В частности, при нормальных условиях (T=0 °C (273К) и p=101,3 кПа) объём 1 моля газа, равен 22,4 л. Этот объём называют молярным объёмом газа Vm. Пересчитать эту величину на другие температуру и давление можно с помощью уравнения Менделеева-Клапейрона

1) Закон Шарля:

2) Закон Гей-Люссака:

3) Закон Боля-Мариотта:

Следствие 2 : Отношение масс одинаковых объемов двух газов есть величина постоянная для данных газов

Эта постоянная величина называется относительной плотностью газов и обозначается D. Так как молярные объемы всех газов одинаковы (1-е следствие закона Авогадро), то отношение молярных масс любой пары газов также равна этой постоянной:

В Формуле мы использовали:

Относительная плотность газа

Молярные массы

Давление

Молярный объем

Универсальная газовая постоянная

Абсолютная температу

Закон Бойля Мариотта - При постоянной температуре и массе идеального газа произведение его давления и объёма постоянно.

Это означает, что с ростом давления на газ его объем уменьшается, и наоборот. Для неизменного количества газа закон Бойля - Мариотта можно также интерпретировать следующим образом: при неизменной температуре произведение давления на объем является величиной постоянной. Закон Бойля - Мариотта выполняется строго для идеального газа и является следствием уравнения Менделеева Клапейрона. Для реальных газов закон Бойля - Мариотта выполняется приближенно. Практически все газы ведут себя как идеальные при не слишком высоких давлениях и не слишком низких температурах.

Чтобы было легче понять Закон Бойля Мариотта представим, что вы сдавливаете надутый воздушный шарик. Поскольку свободного пространства между молекулами воздуха достаточно, вы без особого труда, приложив некоторую силу и проделав определенную работу, сожмете шарик, уменьшив объем газа внутри него. Это одно из основных отличий газа от жидкости. В шарике с жидкой водой, например, молекулы упакованы плотно, как если бы шарик был заполнен микроскопическими дробинками. Поэтому вода не поддается, в отличие от воздуха, упругому сжатию.

Так же есть:

Закон Шарля:

Закон Гей Люссака:

В законе мы использовали:

Давление в 1 сосуде

Объем 1 сосуда

Давление во 2 сосуде

Объем 2 сосуда

Закон Гей Люссака - при постоянном давлении объём постоянной массы газа пропорционален абсолютной температуре

Объем V данной массы газа при постоянном давлении газа прямо пропорционален изменению температуры

Закон Гей-Люссака справедлив только для идеальных газов, реальные газы подчиняются ему при температурах и давлениях, далеких от критических значений. Является частным случаем уравнения Клайперона.

Так же есть:

Уравнение Менделеева Клапейрона:

Закон Шарля:

Закон Бойля Мариотта:

В законе мы использовали:

Объем в 1 сосуде

Температура в 1 сосуде

Объем во 1 сосуде

Температура в 1 сосуде

Начальный объем газа

Объем газа при температуре T

Коэффициент теплового расширения газов

Разность начальной и конечной температур

Закон Генри - закон, по которому при постоянной температуре растворимость газа в данной жидкости прямо пропорциональна давлению этого газа над раствором. Закон пригоден лишь для идеальных растворов и невысоких давлений.

Закон Генри описывает процесс растворения газа в жидкости. Что представляет собой жидкость, в которой растворен газ, мы знаем на примере газированных напитков - безалкогольных, слабоалкогольных, а по большим праздникам - шампанского. Во всех этих напитках растворена двуокись углерода (химическая формула CO2) - безвредный газ, используемый в пищевой промышленности по причине его хорошей растворимости в воде, а пенятся после открытия бутылки или банки все эти напитки по той причине, что растворенный газ начинает выделяться из жидкости в атмосферу, поскольку после открытия герметичного сосуда давление внутри падает.

Собственно, закон Генри констатирует достаточно простой факт: чем выше давление газа над поверхностью жидкости, тем труднее растворенному в ней газу высвободиться. И это совершенно логично с точки зрения молекулярно-кинетической теории, поскольку молекуле газа, чтобы вырваться на свободу с поверхности жидкости, нужно преодолеть энергию соударений с молекулами газа над поверхностью, а чем выше давление и, как следствие, число молекул в приграничной области, тем сложнее растворенной молекуле преодолеть этот барьер.

В формуле мы использовали:

Концентрация газа в растворе в долях моля

Коэффициент Генри

Парциальное давление газа над раствором

Закон излучения Кирхгофа - отношение испускательной и поглощательной способностей не зависит от природы тела, оно является для всех тел одной и той же.

По определению, абсолютно чёрное тело поглощает всё падающее на него излучение, то есть для него (Поглощательная способность тела) . Поэтому функция совпадает с испускательной способностью

В формуле мы использовали:

Испускательная способность тела

Поглощательная способность тела

Функция Кирхгофа

Закон Стефана-Больцмана - Энергетическая светимость абсолютно черного тела пропорциональна четвертой степени абсолютной температуры.

Из формулы видно, что при повышении температуры светимость тела не просто возрастает - она возрастает в значительно большей степени. Увеличьте температуру вдвое, и светимость возрастет в 16 раз!

Нагретые тела излучают энергию в виде электромагнитных волн различной длины. Когда мы говорим, что тело «раскалено докрасна», это значит, что его температура достаточно высока, чтобы тепловое излучение происходило в видимой, световой части спектра. На атомарном уровне излучение становится следствием испускания фотонов возбужденными атомами.

Чтобы понять, как действует этот закон, представьте себе атом, излучающий свет в недрах Солнца. Свет тут же поглощается другим атомом, излучается им повторно - и таким образом передается по цепочке от атома к атому, благодаря чему вся система находится в состоянии энергетического равновесия . В равновесном состоянии свет строго определенной частоты поглощается одним атомом в одном месте одновременно с испусканием света той же частоты другим атомом в другом месте. В результате интенсивность света каждой длины волны спектра остается неизменной.

Температура внутри Солнца падает по мере удаления от его центра. Поэтому, по мере движения по направлению к поверхности, спектр светового излучения оказывается соответствующим более высоким температурам, чем температура окружающий среды. В результате, при повторном излучении, согласно закону Стефана-Больцмана , оно будет происходить на более низких энергиях и частотах, но при этом, в силу закона сохранения энергии, будет излучаться большее число фотонов. Таким образом, к моменту достижения им поверхности спектральное распределение будет соответствовать температуре поверхности Солнца (около 5 800 К), а не температуре в центре Солнца (около 15 000 000 К).

Энергия, поступившая к поверхности Солнца (или к поверхности любого горячего объекта), покидает его в виде излучения. Закон Стефана-Больцмана как раз и говорит нам, какова излученная энергия.

В вышеприведенной формулировке закон Стефана-Больцмана распространяется только на абсолютно черное тело, поглощающее всё попадающее на его поверхность излучение. Реальные физические тела поглощают лишь часть лучевой энергии, а оставшаяся часть ими отражается, однако закономерность, согласно которой удельная мощность излучения с их поверхности пропорциональна Т в 4, как правило, сохраняется и в этом случае, однако постоянную Больцмана в этом случае приходится заменять на другой коэффициент, который будет отражать свойства реального физического тела. Такие константы обычно определяются экспериментальным путем.

В формуле мы использовали:

Энергетическая светимость тела

Постоянная Стефана-Больцмана

Абсолютная температура

Закон Шарля - давление данной массы идеального газа при постоянном объеме прямо пропорционально абсолютной температуре

Чтобы легче было понять закон Шарля , представьте себе воздух внутри воздушного шарика. При постоянной температуре воздух в шарике будет расширяться или сжиматься, пока давление, производимое его молекулами, не достигнет 101 325 паскалей и не сравняется с атмосферным давлением. Иными словами, пока на каждый удар молекулы воздуха извне, направленный внутрь шарика, не будет приходиться аналогичный удар молекулы воздуха, направленный изнутри шарика вовне.

Если понизить температуру воздуха в шарике (например, положив его в большой холодильник), молекулы внутри шарика станут двигаться медленнее, менее энергично ударяя изнутри о стенки шарика. Молекулы наружного воздуха тогда будут сильнее давить на шарик, сжимая его, в результате объем газа внутри шарика будет уменьшаться. Это будет происходить до тех пор, пока увеличение плотности газа не компенсирует понизившуюся температуру, и тогда опять установится равновесие.

Так же есть:

Уравнение Менделеева Клапейрона:

Закон Гей Люссака:

Закон Бойля Мариотта:

В законе мы использовали:

Давление в 1 сосуде

Температура в 1 сосуде

Давление в 2 сосуде

Температура в 2 сосуде

Первый закон термодинамики - Изменение внутренней энергии ΔU не изолированной термодинамической системы равно разности между количеством теплоты Q, переданной системе, и работой A внешних сил

Вместо работы А, совершаемой внешними силами над термодинамической системой, часто удобнее бывает рассматривать работу A’, совершаемую термодинамической системой над внешними телами. Так как эти работы равны по абсолютному значению, но противоположны по знаку:

Тогда после такого преобразования первый закон термодинамики будет иметь вид:

Первый закон термодинамики - В не изолированной термодинамической системе изменение внутренней энергии равно разности между полученным количеством теплоты Q и работой A’, совершаемой данной системой

Говоря простым языком первый закон термодинамики говорит о энергии, которая не может сама создаваться и исчезать в никуда, она передается от одной системы к другой и превращается из одной формы в другую (механическая в тепловую).

Важным следствием первого закона термодинамики является то, что невозможности создать машину (двигатель), которая способна совершать полезную работу без потребления энергии извне. Такая гипотетическая машина получила название вечного двигателя первого рода.

Среди фундаментальных постоянных постоянная Больцмана k занимает особое место. Ещё в 1899 г. М. Планк предлагал следующие четыре числовых константы в качестве фундаментальных для построения единой физики: скорость света c , квант действия h , гравитационную постоянную G и постоянную Больцмана k . Среди этих констант k занимает особое место. Она не определяет элементарных физических процессов и не входит в основные принципы динамики, но устанавливает связь между микроскопическими динамическими явлениями и макроскопическими характеристиками состояния частиц. Она же входит в фундаментальный закон природы, связывающий энтропию системы S с термодинамической вероятностью её состояния W :

S=klnW (формула Больцмана)

и определяющий направленность физических процессов в природе. Особое внимание следует обратить на то, что появление постоянной Больцмана в той или иной формуле классической физики всякий раз совершенно отчётливо указывает на статистический характер описываемого ею явления. Понимание физической сущности постоянной Больцмана требует вскрытия громадных пластов физики - статистики и термодинамики, теории эволюции и космогонии.

Исследования Л. Больцмана

Начиная с 1866 г. Одна за другой выходят в свет работы австрийского теоретика Л. Больцмана. В них статистическая теория получает столь солидное обоснование, что превращается в подлинную науку о физических свойствах коллективов частиц.

Распределение было получено Максвеллом для простейшего случая одноатомного идеального газа. В 1868 г. Больцман показывает, что и многоатомные газы в состоянии равновесия будут также описываться распределением Максвелла.

Больцман развивает в трудах Клаузиуса представление о том, что газовые молекулы нельзя рассматривать как отдельные материальные точки. У многоатомных молекул имеются ещё вращение молекулы как целого и колебания составляющих её атомов. Он вводит в рассмотрение число степеней свободы молекул как число «переменных, требующихся для определения положения всех составных частей молекулы в пространстве и их положения друг относительно друга» и показывает, что из данных эксперимента по теплоёмкости газов следует равномерное распределение энергии между различными степенями свободы. На каждую степень свободы приходится одна и та же энергия

Больцмана напрямую связал характеристики микромира с характеристиками макромира. Вот ключевая формула, устанавливающая это соотношение:

1/2 mv2 = kT

где m и v - соответственно масса и средняя скорость движения молекул газа, Т - температура газа (по абсолютной шкале Кельвина), а k - постоянная Больцмана. Это уравнение прокладывает мостик между двумя мирами, связывая характеристики атомного уровня (в левой части) с объемными свойствами (в правой части), которые можно измерить при помощи человеческих приборов, в данном случае термометров. Эту связь обеспечивает постоянная Больцмана k, равная 1,38 x 10-23 Дж/К.

Заканчивая разговор о постоянной Больцмана, хочется ещё раз подчеркнуть её фундаментальное значение в науке. Она содержит в себе громадные пласты физики - атомистика и молекулярно-кинетическая теория строения вещества, статистическая теория и сущность тепловых процессов. Изучение необратимости тепловых процессов раскрыло природу физической эволюции, сконцентрировавшейся в формуле Больцмана S=klnW. Следует подчеркнуть, что положение, согласно которому замкнутая система рано или поздно придёт в состояние термодинамического равновесия, справедливо лишь для изолированных систем и систем, находящихся в стационарных внешних условиях. В нашей Вселенной непрерывно происходят процессы, результатом которых является изменение её пространственных свойств. Нестационарность Вселенной неизбежно приводит к отсутствию в ней статистического равновесия.